
Paris Documentation
Release 1.2.3

Jamie Matthews, Simon Holywell, Durham Hale

April 08, 2013

CONTENTS

1 Philosophy 3

2 Installation 5
2.1 Packagist . 5
2.2 Download . 5

3 Configuration 7
3.1 Setup . 7
3.2 Model prefixing . 7
3.3 Further Configuration . 8
3.4 Query logging . 8

4 Models 9
4.1 Model Classes . 9
4.2 Database Tables . 9
4.3 ID Column . 10

5 Associations 11
5.1 Summary . 11
5.2 Has-one . 11
5.3 Has many . 12
5.4 Belongs to . 13
5.5 Has many through . 13

6 Querying 15
6.1 Getting data from objects, updating and inserting data . 15

7 Filters 17
7.1 Filters with arguments . 17

8 Transactions 19

9 A word on validation 21

10 Migrations 23

11 Mulitple Connections 25

12 Indices and tables 27

i

ii

Paris Documentation, Release 1.2.3

Contents:

CONTENTS 1

Paris Documentation, Release 1.2.3

2 CONTENTS

CHAPTER

ONE

PHILOSOPHY

Paris is built with the same less is more philosophy as Idiorm.

3

http://github.com/j4mie/idiorm/

Paris Documentation, Release 1.2.3

4 Chapter 1. Philosophy

CHAPTER

TWO

INSTALLATION

2.1 Packagist

This library is available through Packagist with the vendor and package identifier of j4mie/paris

Please see the Packagist documentation for further information.

2.2 Download

You can clone the git repository, download idiorm.php or a release tag and then drop the idiorm.php file in the ven-
dors/3rd party/libs directory of your project.

5

http://packagist.org/

Paris Documentation, Release 1.2.3

6 Chapter 2. Installation

CHAPTER

THREE

CONFIGURATION

3.1 Setup

Paris requires Idiorm. Install Idiorm and Paris somewhere in your project directory, and require both.

require_once ’your/path/to/idiorm.php’;
require_once ’your/path/to/paris.php’;

Then, you need to tell Idiorm how to connect to your database. For full details of how to do this, see ‘Idiorm’s
documentation‘_.

Briefly, you need to pass a Data Source Name connection string to the configure method of the ORM class.

ORM::configure(’sqlite:./example.db’);

You may also need to pass a username and password to your database driver, using the username and password
configuration options. For example, if you are using MySQL:

ORM::configure(’mysql:host=localhost;dbname=my_database’);
ORM::configure(’username’, ’database_user’);
ORM::configure(’password’, ’top_secret’);

3.2 Model prefixing

Setting: Model::$auto_prefix_models

To save having type out model class name prefixes whenever code utilises Model::for_table() it is possible to
specify a prefix that will be prepended onto the class name.

The model prefix is treated the same way as any other class name when Paris attempts to convert it to a table name.
This is documented in the Models section of the documentation.

Here is a namespaced example to make it clearer:

Model::$auto_prefix_models = ’\\Tests\\’;
Model::factory(’Simple’)->find_many(); // SQL executed: SELECT * FROM ‘tests_simple‘
Model::factory(’SimpleUser’)->find_many(); // SQL executed: SELECT * FROM ‘tests_simple_user‘

Note: It is possible to define the table name by setting $_table in your individual model classes. As documented
in the Models section of the documentation.

7

http://github.com/j4mie/idiorm/

Paris Documentation, Release 1.2.3

3.3 Further Configuration

The only other configuration options provided by Paris itself are the $_table and $_id_column static proper-
ties on model classes. To configure the database connection, you should use Idiorm’s configuration system via the
ORM::configure method.

If you are using multiple connections, the optional $_connection_key static property may also be used to provide a
default string key indicating which database connection in ORM should be used.

See ‘Idiorm’s documentation‘_ for full details.

3.4 Query logging

Idiorm can log all queries it executes. To enable query logging, set the logging option to true (it is false by
default).

ORM::configure(’logging’, true);

When query logging is enabled, you can use two static methods to access the log. ORM::get_last_query()
returns the most recent query executed. ORM::get_query_log() returns an array of all queries executed.

8 Chapter 3. Configuration

CHAPTER

FOUR

MODELS

4.1 Model Classes

You should create a model class for each entity in your application. For example, if you are building an application
that requires users, you should create a User class. Your model classes should extend the base Model class:

class User extends Model {
}

Paris takes care of creating instances of your model classes, and populating them with data from the database. You
can then add behaviour to this class in the form of public methods which implement your application logic. This
combination of data and behaviour is the essence of the Active Record pattern.

4.2 Database Tables

Your User class should have a corresponding user table in your database to store its data.

By default, Paris assumes your class names are in CapWords style, and your table names are in lower-
case_with_underscores style. It will convert between the two automatically. For example, if your class is called
CarTyre, Paris will look for a table named car_tyre.

If you are using namespaces then they will be converted to a table name in a similar way. For example
\Models\CarTyre would be converted to models_car_tyre. Note here that backslashes are replaced with
underscores in addition to the CapWords replacement discussed in the previous paragraph.

To override this default behaviour, add a public static property to your class called $_table:

class User extends Model {
public static $_table = ’my_user_table’;

}

4.2.1 Auto Prefixing

To save having type out model class name prefixes whenever code utilises Model::for_table() it is possible to
specify a prefix that will be prepended onto the class name.

See the Configuration documentation for more details.

9

http://martinfowler.com/eaaCatalog/activeRecord.html

Paris Documentation, Release 1.2.3

4.3 ID Column

Paris requires that your database tables have a unique primary key column. By default, Paris will use a column called
id. To override this default behaviour, add a public static property to your class called $_id_column:

class User extends Model {
public static $_id_column = ’my_id_column’;

}

Note - Paris has its own default ID column name mechanism, and does not respect column names specified in Idiorm’s
configuration.

10 Chapter 4. Models

CHAPTER

FIVE

ASSOCIATIONS

Paris provides a simple API for one-to-one, one-to-many and many-to-many relationships (associations) between
models. It takes a different approach to many other ORMs, which use associative arrays to add configuration metadata
about relationships to model classes. These arrays can often be deeply nested and complex, and are therefore quite
error-prone.

Instead, Paris treats the act of querying across a relationship as a behaviour, and supplies a family of helper methods to
help generate such queries. These helper methods should be called from within methods on your model classes which
are named to describe the relationship. These methods return ORM instances (rather than actual Model instances) and
so, if necessary, the relationship query can be modified and added to before it is run.

5.1 Summary

The following list summarises the associations provided by Paris, and explains which helper method supports each
type of association:

5.1.1 One-to-one

Use has_one in the base, and belongs_to in the associated model.

5.1.2 One-to-many

Use has_many in the base, and belongs_to in the associated model.

5.1.3 Many-to-many

Use has_many_through in both the base and associated models.

Below, each association helper method is discussed in detail.

5.2 Has-one

One-to-one relationships are implemented using the has_one method. For example, say we have a User model.
Each user has a single Profile, and so the user table should be associated with the profile table. To be
able to find the profile for a particular user, we should add a method called profile to the User class (note that
the method name here is arbitrary, but should describe the relationship). This method calls the protected has_one

11

Paris Documentation, Release 1.2.3

method provided by Paris, passing in the class name of the related object. The profile method should return an
ORM instance ready for (optional) further filtering.

class Profile extends Model {
}

class User extends Model {
public function profile() {

return $this->has_one(’Profile’);
}

}

The API for this method works as follows:

// Select a particular user from the database
$user = Model::factory(’User’)->find_one($user_id);

// Find the profile associated with the user
$profile = $user->profile()->find_one();

By default, Paris assumes that the foreign key column on the related table has the same name as the current (base)
table, with _id appended. In the example above, Paris will look for a foreign key column called user_id on the
table used by the Profile class. To override this behaviour, add a second argument to your has_one call, passing
the name of the column to use.

5.3 Has many

One-to-many relationships are implemented using the has_many method. For example, say we have a User model.
Each user has several Post objects. The user table should be associated with the post table. To be able to find the
posts for a particular user, we should add a method called posts to the User class (note that the method name here
is arbitrary, but should describe the relationship). This method calls the protected has_many method provided by
Paris, passing in the class name of the related objects. Pass the model class name literally, not a pluralised version.
The posts method should return an ORM instance ready for (optional) further filtering.

class Post extends Model {
}

class User extends Model {
public function posts() {

return $this->has_many(’Post’); // Note we use the model name literally - not a pluralised version
}

}

The API for this method works as follows:

// Select a particular user from the database
$user = Model::factory(’User’)->find_one($user_id);

// Find the posts associated with the user
$posts = $user->posts()->find_many();

By default, Paris assumes that the foreign key column on the related table has the same name as the current (base)
table, with _id appended. In the example above, Paris will look for a foreign key column called user_id on the
table used by the Post class. To override this behaviour, add a second argument to your has_many call, passing the
name of the column to use.

12 Chapter 5. Associations

Paris Documentation, Release 1.2.3

5.4 Belongs to

The ‘other side’ of has_one and has_many is belongs_to. This method call takes identical parameters as these
methods, but assumes the foreign key is on the current (base) table, not the related table.

class Profile extends Model {
public function user() {

return $this->belongs_to(’User’);
}

}

class User extends Model {
}

The API for this method works as follows:

// Select a particular profile from the database
$profile = Model::factory(’Profile’)->find_one($profile_id);

// Find the user associated with the profile
$user = $profile->user()->find_one();

Again, Paris makes an assumption that the foreign key on the current (base) table has the same name as the related
table with _id appended. In the example above, Paris will look for a column named user_id. To override this
behaviour, pass a second argument to the belongs_to method, specifying the name of the column on the current
(base) table to use.

5.5 Has many through

Many-to-many relationships are implemented using the has_many_through method. This method has only one
required argument: the name of the related model. Supplying further arguments allows us to override default behaviour
of the method.

For example, say we have a Book model. Each Book may have several Author objects, and each Author may
have written several Books. To be able to find the authors for a particular book, we should first create an intermediary
model. The name for this model should be constructed by concatenating the names of the two related classes, in
alphabetical order. In this case, our classes are called Author and Book, so the intermediate model should be called
AuthorBook.

We should then add a method called authors to the Book class (note that the method name here is arbitrary, but
should describe the relationship). This method calls the protected has_many_through method provided by Paris,
passing in the class name of the related objects. Pass the model class name literally, not a pluralised version. The
authors method should return an ORM instance ready for (optional) further filtering.

class Author extends Model {
public function books() {

return $this->has_many_through(’Book’);
}

}

class Book extends Model {
public function authors() {

return $this->has_many_through(’Author’);
}

}

5.4. Belongs to 13

Paris Documentation, Release 1.2.3

class AuthorBook extends Model {
}

The API for this method works as follows:

// Select a particular book from the database
$book = Model::factory(’Book’)->find_one($book_id);

// Find the authors associated with the book
$authors = $book->authors()->find_many();

// Get the first author
$first_author = $authors[0];

// Find all the books written by this author
$first_author_books = $first_author->books()->find_many();

5.5.1 Overriding defaults

The has_many_through method takes up to four arguments, which allow us to progressively override default
assumptions made by the method.

First argument: associated model name - this is mandatory and should be the name of the model we wish to select
across the association.

Second argument: intermediate model name - this is optional and defaults to the names of the two associated
models, sorted alphabetically and concatenated.

Third argument: custom key to base table on intermediate table - this is optional, and defaults to the name of the
base table with _id appended.

Fourth argument: custom key to associated table on intermediate table - this is optional, and defaults to the name
of the associated table with _id appended.

14 Chapter 5. Associations

CHAPTER

SIX

QUERYING

Querying allows you to select data from your database and populate instances of your model classes. Queries start
with a call to a static factory method on the base Model class that takes a single argument: the name of the model
class you wish to use for your query. This factory method is then used as the start of a method chain which gives you
full access to Idiorm’s fluent query API. See Idiorm’s documentation for details of this API.

For example:

$users = Model::factory(’User’)
->where(’name’, ’Fred’)
->where_gte(’age’, 20)
->find_many();

You can also use the same shortcut provided by Idiorm when looking up a record by its primary key ID:

$user = Model::factory(’User’)->find_one($id);

The only differences between using Idiorm and using Paris for querying are as follows:

1. You do not need to call the for_table method to specify the database table to use. Paris will supply this
automatically based on the class name (or the $_table static property, if present).

2. The find_one and find_many methods will return instances of your model subclass, instead of the base
ORM class. Like Idiorm, find_one will return a single instance or false if no rows matched your query,
while find_many will return an array of instances, which may be empty if no rows matched.

3. Custom filtering, see next section.

You may also retrieve a count of the number of rows returned by your query. This method behaves exactly like Idiorm’s
count method:

$count = Model::factory(’User’)->where_lt(’age’, 20)->count();

6.1 Getting data from objects, updating and inserting data

The model instances returned by your queries now behave exactly as if they were instances of Idiorm’s raw ORM class.

You can access data:

$user = Model::factory(’User’)->find_one($id);
echo $user->name;

Update data and save the instance:

15

http://github.com/j4mie/idiorm/

Paris Documentation, Release 1.2.3

$user = Model::factory(’User’)->find_one($id);
$user->name = ’Paris’;
$user->save();

To create a new (empty) instance, use the create method:

$user = Model::factory(’User’)->create();
$user->name = ’Paris’;
$user->save();

To check whether a property has been changed since the object was created (or last saved), call the is_dirtymethod:

$name_has_changed = $person->is_dirty(’name’); // Returns true or false

You can also use database expressions when setting values on your model:

$user = Model::factory(’User’)->find_one($id);
$user->name = ’Paris’;
$user->set_expr(’last_logged_in’, ’NOW()’);
$user->save();

Of course, because these objects are instances of your base model classes, you can also call methods that you have
defined on them:

class User extends Model {
public function full_name() {

return $this->first_name . ’ ’ . $this->last_name;
}

}

$user = Model::factory(’User’)->find_one($id);
echo $user->full_name();

To delete the database row associated with an instance of your model, call its delete method:

$user = Model::factory(’User’)->find_one($id);
$user->delete();

You can also get the all the data wrapped by a model subclass instance using the as_array method. This will return
an associative array mapping column names (keys) to their values.

The as_array method takes column names as optional arguments. If one or more of these arguments is supplied,
only matching column names will be returned.

class Person extends Model {
}

$person = Model::factory(’Person’)->create();

$person->first_name = ’Fred’;
$person->surname = ’Bloggs’;
$person->age = 50;

// Returns array(’first_name’ => ’Fred’, ’surname’ => ’Bloggs’, ’age’ => 50)
$data = $person->as_array();

// Returns array(’first_name’ => ’Fred’, ’age’ => 50)
$data = $person->as_array(’first_name’, ’age’);

16 Chapter 6. Querying

CHAPTER

SEVEN

FILTERS

It is often desirable to create reusable queries that can be used to extract particular subsets of data without repeating
large sections of code. Paris allows this by providing a method called filter which can be chained in queries
alongside the existing Idiorm query API. The filter method takes the name of a public static method on the current
Model subclass as an argument. The supplied method will be called at the point in the chain where filter is called,
and will be passed the ORM object as the first parameter. It should return the ORM object after calling one or more
query methods on it. The method chain can then be continued if necessary.

It is easiest to illustrate this with an example. Imagine an application in which users can be assigned a role, which
controls their access to certain pieces of functionality. In this situation, you may often wish to retrieve a list of users
with the role ‘admin’. To do this, add a static method called (for example) admins to your Model class:

class User extends Model {
public static function admins($orm) {

return $orm->where(’role’, ’admin’);
}

}

You can then use this filter in your queries:

$admin_users = Model::factory(’User’)->filter(’admins’)->find_many();

You can also chain it with other methods as normal:

$young_admins = Model::factory(’User’)
->filter(’admins’)
->where_lt(’age’, 18)
->find_many();

7.1 Filters with arguments

You can also pass arguments to custom filters. Any additional arguments passed to the filter method (after the
name of the filter to apply) will be passed through to your custom filter as additional arguments (after the ORM
instance).

For example, let’s say you wish to generalise your role filter (see above) to allow you to retrieve users with any role.
You can pass the role name to the filter as an argument:

class User extends Model {
public static function has_role($orm, $role) {

return $orm->where(’role’, $role);
}

}

17

Paris Documentation, Release 1.2.3

$admin_users = Model::factory(’User’)->filter(’has_role’, ’admin’)->find_many();
$guest_users = Model::factory(’User’)->filter(’has_role’, ’guest’)->find_many();

These examples may seem simple (filter(’has_role’, ’admin’) could just as easily be achieved us-
ing where(’role’, ’admin’)), but remember that filters can contain arbitrarily complex code - adding
raw_where clauses or even complete raw_query calls to perform joins, etc. Filters provide a powerful mech-
anism to hide complexity in your model’s query API.

18 Chapter 7. Filters

CHAPTER

EIGHT

TRANSACTIONS

Paris (or Idiorm) doesn’t supply any extra methods to deal with transactions, but it’s very easy to use PDO’s built-in
methods:

// Start a transaction
ORM::get_db()->beginTransaction();

// Commit a transaction
ORM::get_db()->commit();

// Roll back a transaction
ORM::get_db()->rollBack();

For more details, see the PDO documentation on Transactions.

19

http://www.php.net/manual/en/pdo.transactions.php

Paris Documentation, Release 1.2.3

20 Chapter 8. Transactions

CHAPTER

NINE

A WORD ON VALIDATION

It’s generally considered a good idea to centralise your data validation in a single place, and a good place to do this
is inside your model classes. This is preferable to handling validation alongside form handling code, for example.
Placing validation code inside models means that if you extend your application in the future to update your model via
an alternative route (say a REST API rather than a form) you can re-use the same validation code.

Despite this, Paris doesn’t provide any built-in support for validation. This is because validation is potentially quite
complex, and often very application-specific. Paris is deliberately quite ignorant about your actual data - it simply
executes queries, and gives you the responsibility of making sure the data inside your models is valid and correct.
Adding a full validation framework to Paris would probably require more code than Paris itself!

However, there are several simple ways that you could add validation to your models without any help from Paris. You
could override the save() method, check the data is valid, and return false on failure, or call parent::save()
on success. You could create your own subclass of the Model base class and add your own generic validation methods.
Or you could write your own external validation framework which you pass model instances to for checking. Choose
whichever approach is most suitable for your own requirements.

21

Paris Documentation, Release 1.2.3

22 Chapter 9. A word on validation

CHAPTER

TEN

MIGRATIONS

Paris does not have native support for migrations, but some work has been done to integrate PHPMig. If you want
to have migrations in your project then this is recommended route as Paris will never have migrations directly imple-
mented in the core. Please refer to the Paris and Idiorm Philosophy for reasons why.

To integrate Paris with PHPMig you will need to follow their installation instructions and then configure it to use the
Paris PDO instance:

$container[’db’] = $container->share(function(){
return ORM::get_db();

});
$container[’phpmig.adapter’] = $container->share(function() use ($container) {

return new Adapter\PDO\Sql($container[’db’], ’migrations’);
});

23

https://github.com/davedevelopment/phpmig
https://github.com/davedevelopment/phpmig#getting-started

Paris Documentation, Release 1.2.3

24 Chapter 10. Migrations

CHAPTER

ELEVEN

MULITPLE CONNECTIONS

Paris now works with multiple database conections (and necessarily relies on an updated version of Idiorm
that also supports multiple connections). Database connections are identified by a string name, and default to
OrmWrapper::DEFAULT_CONNECTION (which is really ORM::DEFAULT_CONNECTION).

See Idiorm’s documentation for information about configuring multiple connections.

The connection to use can be specified in two separate ways. To indicate a default connection key for a subclass of
Model, create a public static property in your model class called $_connection_name.

// A named connection, where ’alternate’ is an arbitray key name
ORM::configure(’sqlite:./example2.db’, null, ’alternate’);

class SomeClass extends Model
{

public static $_connection_name = ’alternate’;
}

The connection to use can also be specified as an optional additional parameter to OrmWrapper::for_table(),
or to Model::factory(). This will override the default setting (if any) found in the $_connection_name
static property.

$person = Model::factory(’Author’, ’alternate’)->find_one(1); // Uses connection named ’alternate’

The connection can be changed after a model is populated, should that be necessary:

$person = Model::factory(’Author’)->find_one(1); // Uses default connection
$person->orm = Model::factory(’Author’, ’alternate’); // Switches to connection named ’alternate’
$person->name = ’Foo’;
$person->save(); // *Should* now save through the updated connection

Queries across multiple connections are not supported. However, as the Paris methods has_one, has_many and
belongs_to don’t require joins, these should work as expected, even when the objects on opposite sides of the
relation belong to diffrent connections. The has_many_through relationship requires joins, and so will not reliably
work across different connections.

25

http://github.com/j4mie/idiorm/

Paris Documentation, Release 1.2.3

26 Chapter 11. Mulitple Connections

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

27

	Philosophy
	Installation
	Packagist
	Download

	Configuration
	Setup
	Model prefixing
	Further Configuration
	Query logging

	Models
	Model Classes
	Database Tables
	ID Column

	Associations
	Summary
	Has-one
	Has many
	Belongs to
	Has many through

	Querying
	Getting data from objects, updating and inserting data

	Filters
	Filters with arguments

	Transactions
	A word on validation
	Migrations
	Mulitple Connections
	Indices and tables

